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1 Some multivariate calculus

1.1 Partial derivatives

Functions often take multiple variables. For example, f(x, y) is a function of both x and y. If we let z = f(x, y),
then we can visualize f as a surface in xyz-space, where the height z0 of a point (x0, y0, z0) on that surface is equal
to f(x0, y0). The set of all points on the surface such that z = k, where k is a given constant, is called a level set.
Graphically, a level set is a cross section of the curve parallel to the xy-plane. Lines in topographic maps are level
sets.

How do we take the derivative of such a function, and what would that derivative mean? In single-variable
calculus, the derivative of a function is the slope of its tangent line. However, with multiple variables, there are
infinite tangent lines (in three dimensions, there is a tangent plane). One way to talk about derivatives when you
have multiple variables is to take the derivative of each variable while holding the rest constant. Graphically, this
means slicing the surface parallel to a certain axis (say, the x-axis) and taking the derivative with respect to x
while holding the other variables fixed. This is called the partial derivative with respect to x, and it is denoted by
∂f
∂x . (It is also denoted fx and ∂xf . The former is ambiguous and I advise against it, but it is used often.)

Example Let f(x, y) = sinxy + x2e3y. Then

∂f

∂x
= y cosxy + 2xe3y

∂f

∂y
= x cosxy + 3x2ey.

1.2 Optimization with Lagrange multipliers

Optimization in multiple variables is similar to optimization in a single variable. However, in economics, we are
mostly concerned with optimization under a given constraint. This is expressed generally as optimizing f(x, y)
subject to the constraint g(x, y) = c, which is denoted

max
x,y
{f(x, y)}

s.t. g(x, y) = c,

if we are maximizing (and min if we are minimizing). The solution will be the point in g(x, y) = c with the highest
(or lowest) value for f(x, y). Graphically, g(x, y) = c is a curve in the xy-plane that can be projected onto the
surface f . We want to walk along this curve and select the point at which ∂f

∂x and ∂f
∂y are both zero. This will

indicate to us that we are at a critical point. We will then assume that this critical point is a local extremum and,
moreover, the global extremum we are looking for without checking the second-order derivative (economists are
lazy).

This is computed with the method of Lagrange multipliers. Observe that at the optimal point, the curve
g(x, y) = c is tangent to a level set of f . (If these were not tangent, then the level set of f would cut through the
curve g(x, y) = c, which would imply that f is increasing or decreasing along g(x, y) = c at that point, i.e., the

1



derivative is nonzero.) Therefore, the derivatives of g(x, y)− c and f(x, y) with respect to x and y will be parallel,
i.e.,

∂f

∂x
= λ

∂

∂x
(g(x, y)− c) and

∂f

∂y
= λ

∂

∂y
(g(x, y)− c),

where λ is some constant (called the Lagrange multiplier). We can express this concisely by defining the Lagrangian,

L(x, y, λ) = f(x, y) + λ(g(x, y)− c),

and optimizing L(x, y, λ) over x and y. Observe that taking the partial derivatives of the Lagrangian will give us
the two equations above.

2 Utility theory

2.1 Preference relations

(Note that this section will not be very rigorous, because I am not assuming enough math to make it rigorous.)
Suppose there are two goods, called good-X and good-Y. A consumer can choose between different quantities of

each good. Let the point (x, y) be a consumption bundle containing x units of good-X and y units of good-Y. The
set of all such bundles is called her consumption set. We write (x1, y1) % (x2, y2) if the consumer thinks the bundle
(x1, y1) is at least as good as the bundle (x2, y2). We call “%” a preference relation; note that “%” is similar to “≥”.
We write (x1, y1) � (x2, y2) if she strictly prefers the bundle (x1, y1) to (x2, y2), and we write (x1, y1) ∼ (x2, y2) if
she is indifferent between the two. We say that her preferences are rational if they satisfy two conditions:

• for all bundles (x1, y1) and (x2, y2) in the consumption set, either (x1, y1) % (x2, y2) or (x1, y1) - (x2, y2)
(this is called completeness), and

• for all bundles (x1, y1), (x2, y2), (x3, y3) in the consumption set, if both (x1, y1) % (x2, y2) and (x2, y2) %
(x3, y3), then (x1, y1) % (x3, y3) (this is called transitivity).

These two conditions mean that the consumer has a preference (possibly indifference) between any two bundles,
and her preferences aren’t cyclical.

It will help us to define some properties about preference relations:

Definition. A preference relation is monotonic if x1 > x2 and y1 > y2 implies that (x1, y1) % (x2, y2). (This
means that at least as much of everything is at least as good.)

Definition. A preference relation is locally nonsatiated if given any bundle (x1, y1) in the consumption set, there
exists a bundle (x2, y2) close enough to (x1, y1) such that (x2, y2) � (x1, y1). (This means that one can always do
a little bit better with a slight change in the bundle.)

Definition. A preference relation is convex implies that if two bundles are each preferable to a third, then any
weighted average of the two bundles is also preferable to the third. Mathematically, if (x1, y1) % (x3, y3) and
(x2, y2) % (x1, y1), then t(x1, y1) + (1− t)(x2, y2) % (x3, y3) for all 0 < t < 1.

Note that convexity encapsulates the notion of diminishing marginal rates of substitution.

2.2 Utility functions

We want to define a function that expresses all these preferences as relations between numbers by mapping each
bundle to a number. We call this a utility function. Given a consumption set and rational preferences over the
consumption set, a utility function satisfies

u(x1, y1) ≥ u(x2, y2) if and only if (x1, y1) % (x2, y2).

Notice that a utility function is a multivariable function, as discussed above. The function u(x, y) maps a quantity
of goods x and a quantity of goods y to a number, and all these numbers produce a surface in three-dimensional
space.

It is very important to note that utility functions express ordinal, not cardinal, relations between bundles. That
is to say, it indicates that a bundle is preferred to another bundle but not by how much. This is because a scaling of

2



a utility function by any increasing function f is a valid utility function over that set of preferences. Mathematically,
if

u(x1, y1) ≥ u(x2, y2) if and only if (x1, y1) % (x2, y2).

then we also have
f(u(x1, y1)) ≥ f(u(x2, y2)) if and only if (x1, y1) % (x2, y2).

Therefore, the utility of a bundle is not the happiness gained from that bundle or the usefulness of that bundle. It
is merely a representation of how preferable it is compared to other bundles. This is a consequence of the choice of
ordinal over cardinal utility. Economists choose ordinal utility over cardinal utility because it is incredibly difficult
(if not impossible) to measure something like happiness with a yardstick that can be used for everyone.

A level set for a utility function is called an indifference curve, because the consumer is indifferent between all
bundles in that level set.

Note that it isn’t obvious that a utility function even exists for a given preference relation. However, it can
be proven that if a preference relation is rational, then a utility function exists that represenents that preference
relation. If the preference relations is also continuous and strictly monotonic, then the utility function is continuous.

2.3 Consumer choice

We assume that a rational consumer will always choose the most preferred bundle from a set of affordable bundles.
We call this set the budget set. given an income m and prices px, py of good-X and good-Y, respectively, we define
the budget set as all bundles (x, y) such that pxx + pyy ≤ m. We model this rational behavior by maximizing
the consumer’s utility function over the budget set. Mathematically, we wish to solve the following optimization
problem:

max
x,y
{u(x, y)}

s.t. pxx+ pyy ≤ m.

If the preference relation is locally nonsatiated, we can change the inequality in the constraint (called the budget
constraint) to equality:

max
x,y
{u(x, y)}

s.t. pxx+ pyy = m.

This maximization will yield two functions x(px, py,m), y(px, py,m) called the demand functions, which indicate
how much of each good the consumer will choose given their prices and her income.

Example Utility functions are often Cobb-Douglas functions: u(x, y) = xαyβ . Let’s solve this explicit optimization
problem:

max
x,y

{
xαyβ

}
s.t. pxx+ pyy = m

L = xαyβ + λ(pxx+ pyy −m)

∂L
∂x

= αxα−1yβ + λpx = 0

∂L
∂y

= βxαyβ−1 + λpy = 0
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αy

βx
=
px
py
⇒ y =

px
py

β

α
x

m = pxx+ py
px
py

β

α
x =

(
1 +

β

α

)
pxx

x =
m(

1 + β
α

)
px

y =
px
py

β

α

m(
1 + β

α

)
px

=
m(

1 + α
β

)
py

Example Instead of giving the consumer an income, let’s give her an endowment ωx of good-X and an endowment
of ωy of good-Y. She can immediately consume her endowment or sell some or all of her endowment to buy other
goods. Her budget constraint is now pxx+pyy = pxωx+pyωy. Let’s also assume a slightly different utility function,
where β = 1− α and α < 1.

max
x,y

{
xαy1−α

}
s.t. pxx+ pyy = pxωx + pyωy

L = xαy1−α + λ(pxx+ pyy − pxωx + pyωy)

∂L
∂x

= αxα−1y1−α + λpx = 0

∂L
∂y

= (1− α)xαy−α + λpy = 0

αy

(1− α)x
=
px
py
⇒ y =

px
py

1− α
α

x

pxx+ py
px
py

1− α
α

x = pxωx + pyωy

x = α

(
ωx +

py
px
ωy

)
y = (1− α)

(
ωx +

py
px
ωy

)

2.4 Shortcomings of utility theory

Here are some possible shortcomings of utility theory:

• Preferences might not be transitive.

• Consumers probably don’t maximize their utility.

• Utility is ordinal, not cardinal.

• Maybe it is more important to maximize something other than utility (see Amartya Sen’s capability approach
or Rawls theory of justice).

What else can you think of?

3 Exchange

Suppose now that we have multiple consumers, each with a certain endowment of goods who are free to trade
among each other, taking prices as given. We will now denote consumer i’s utility as ui, her demand for good x as
xi, and her endowment of good x as ωix. Note that the superscripts are not exponents; they are just labels. (The
notation gets messy.) We will need a quick definition:

Definition. An allocation of goods across consumers is feasible if the total goods allocated is at most the total
goods available in the market.
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3.1 Competitive equilibrium

We define a competitive equilibrium (also called Walrasian equilibrium) to be the set of prices and allocations that
maximizes each consumer’s individual utility (i.e., allows them to maximize their own individual utility through
exchange) and is feasible (i.e., there are no leftover goods or supply meets demand). That is to say, if consumers
individually act in their own interest, a (feasible) equilibrium will emerge. We will mathematically formalize this
definition for the case of two consumers A,B and two kinds of goods x, y:

Definition. A competitive equilibrium is the set of prices px, py and allocations xA, yA, xB , yB that solves the
following maximization problems,

max
xA,yA

{
uA(xA, yA)

}
max
xB ,yB

{
uB(xB , yB)

}
s.t. pxx

A + pyy
A = pxω

A
x + pyω

A
y s.t. pxx

B + pyy
B = pxω

B
x + pyω

B
y ,

and satisfies the following feasibility constraints, i.e.,

xA + xB = ωAx + ωBx

yA + yB = ωAy + ωBy .

Note that it is not guaranteed that a competitive equilibrium exists unless every consumer’s utility function is
continuous, strictly convex, and strictly monotonic. These are nontrivial assumptions.

Example Let’s solve a competitive equilibrium for the set of prices. Suppose uA(xA, yA) = (xA)α(yA)1−α and
uB(xB , yB) = (xB)β(yB)1−β . Then we need to solve the following optimization problems for each consumer’s
demand functions:

max
xA,yA

{
(xA)α(yA)1−α

}
max
xB ,yB

{
(xB)α(yB)1−α

}
s.t. pxx

A + pyy
A = pxω

A
x + pyω

A
y s.t. pxx

B + pyy
B = pxω

B
x + pyω

B
y .

As we saw in the previous example, the solutions to the above optimizations are the following demand functions:

xA = α

(
ωAx +

py
px
ωAy

)
yA = (1− α)

(
px
py
ωAx + ωAy

)
xB = β

(
ωBx +

py
px
ωBy

)
yB = (1− β)

(
px
py
ωBx + ωBy

)
.

We also have the feasibility constraints:

xA + xB = ωAx + ωBx

yA + yB = ωAy + ωBy .

We now have six variables xA, yA, xB , yB , px, py and six equations. We can solve for the relative price
py
px

:

xA + xB = ωAx + ωBx

α

(
ωAx +

py
px
ωAy

)
+ β

(
ωBx +

py
px
ωBy

)
= ωAx + ωBx

py
px

(
αωAy + βωBy

)
+

(
αωAx + βωBx

)
= ωAx + ωBx

py
px

=
(1− α)ωAx + (1− β)ωBx

αωAy + βωBy
.

3.2 The First Welfare Theorem

We want to define some normative concepts to qualify equilibriums.

Definition. A feasible allocation of goods across consumers is Pareto efficient or Pareto optimal if there is no other
feasible allocation that is weakly preferred (“%”) by all consumers and strictly preferred (“�”) by some consumer.
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Note that Pareto optimality is not concerned with distribution or inequality. E.g., an allocation in which all
goods are given to one consumer with strictly monotonic preferences is Pareto efficient.

Definition (First Welfare Theorem). If preferences are locally nonsatiated, then a competitive equilibrium is Pareto
efficient.

Proof. Suppose not. Let (xA1 , y
A
1 ), (xB1 , y

B
1 ), px, py be the competitive equilibrium. Then there exists a feasible

allocation (xA2 , y
A
2 ), (xB2 , y

B
2 ) such that (xA2 , y

A
2 ) � (xA1 , y

A
1 ) and (xB2 , y

B
2 ) % (xB1 , y

B
1 ) (without loss of generality).

Observe that the second allocation must be more expensive than the first allocation for consumer A; otherwise, she
would have chosen the second allocation when maximizing her utility. Similarly, the second allocation must be at
least as expensive as the first allocation for consumer B. Therefore,

pxx
A
2 + pyy

A
2 > pxx

A
2 + pyy

A
2

pxx
B
2 + pyy

B
2 ≥ pxxB2 + pyy

B
2

pxx
A
2 + pyy

A
2 + pxx

B
2 + pyy

B
2 > pxx

A
2 + pyy

A
2 + pxx

B
2 + pyy

B
2

Combining the above with the feasibility and budget constraints, we have

px(xA2 + xB2 ) + py(yA2 + pyy
B
2 ) > pxω

A
x + pyω

A
x + pxω

B
x + pyω

B
y .

Contradiction.

It is interesting and helpful to consider why local nonsatiation is necessary. Also, note that the First Welfare
Theorem is silent about the desirability of the distribution.

3.3 The Second Welfare Theorem

Somewhat of a converse can also be proven.

Theorem (Second Welfare Theorem). Given a Pareto efficient allocation in which all consumers have a positive
endowment of all goods and in which preferences are convex, continuous, locally nonsatiated, and monotonic, there
exists a set of prices such that the allocation and prices form a competitive equilibrium.

(This is tedious to prove and requires more math than we have assumed.)
This theorem implies that any Pareto efficient allocation can implemented through competitive markets. Note

that a benevelont social planner would have to know a nearly impossible amount of information about every
consumer’s preferences and endowments to identify a Pareto efficient allocation. Furthermore, the planner would
need immense power to enforce the wealth transfers necessary for the allocation such that citizens don’t avoid the
wealth transfers. Thus, the Second Welfare Theorem gives many economists significant reasons to believe in the
power of free markets, which yield Pareto efficient allocations by the First Welfare Theorem. Remember, however,
that Pareto efficient is not a very strong or even that desirable quality of an economic system.
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